如图,在△ABC中,AD是角平分线,∠ADE=∠B,若AE=4,AB=5,则AD=_____.
如图,在平面直角坐标系中,抛物线与直线相交于点B、C,点P为直线BC上方的抛物线上的一动点, PQ⊥x轴交BC于点Q,PG⊥BC于点G,点M为线段PQ的中点,则线段GM的最大值为_________.
已知二次函数y=x2﹣4x+3.
(1)用配方法将此二次函数化为顶点式;
(2)求出它的顶点坐标和对称轴;
(3)求出二次函数的图象与x轴的两个交点坐标;
(4)在所给的坐标系上,画出这个二次函数的图象;
(5)观察图象填空,使y随x的增大而减小的x的取值范围是_____.
如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:.
如图所示,在平面直角坐标系中有一格点三角形,该三角形的三个顶点为:A(1,1),B(﹣3,1),C(﹣3,﹣1).
(1)若△ABC的外接圆的圆心为P,则点P的坐标为_____,⊙P的半径为_____;
(2)如图所示,在11×8的网格图内,以坐标原点O点为位似中心,将△ABC按相似比2:1放大,A、B、C的对应点分别为A'、B'、C'.①画出△A'B'C';②将△A'B'C'沿x轴方向平移,需平移_____个单位长度,能使得B'C'所在的直线与⊙P相切.
求抛物线y=x2+x﹣2与x轴的交点坐标.
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.
(Ⅰ)求P与x的函数关系式;
(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;
(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm,把它加工成矩形零件如图,要使矩形的一边在BC上,其余两个顶点分别在AB,AC上,且矩形的长与宽的比为3∶2,求这个矩形零件的边长.
如图,已知抛物线y=x2+bx+c与x轴交于A、B(点A在点B的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
(1)求抛物线的函数解析式;
(2)求直线BC的函数解析式.