如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过O作OF⊥AB于F,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" ,BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥AB于F

∵AO是∠BAC的角平分线,∠ACB=90º

∴OC=OF

∴AB是⊙O的切线

(2)连接CE

∵AO是∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD=

(3)先在△ACO中,设AE=x,

由勾股定理得

(x+3)²="(2x)" ²+3² ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

设BO=y BF=z

即4z=9+3y,4y=12+3z

解得z=y=

∴AB=+4=

考点:圆的综合题.

【题型】解答题
【结束】
24

一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.

(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;

(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.

一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.

(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;

(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.

【答案】(1) ;(2) .

【解析】试题分析:(1)根据袋子中球的个数和球面上分别标有的数字,再根据概率公式即可得出答案;

(2)根据题意先画出树状图,得出所以等可能的结果数和2次摸出的乒乓球球面上数字之和为偶数的结果数,然后根据概率公式求解即可.

试题解析:【解析】
(1)∵共有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4,∴摸出的乒乓球球面上数字为1的概率是

(2)根据题意画树状图如下:

共有12种等可能的结果,两次摸出的乒乓球球面上的数字的和为偶数的有4种情况,则两次摸出的乒乓球球面上的数字的和为偶数的概率为=

点睛:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

【题型】解答题
【结束】
25

2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了  名同学;

(2)条形统计图中,m=  ,n=  

(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?

2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了  名同学;

(2)条形统计图中,m=  ,n=  

(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?

【答案】(1)300;(2)60,90;(3)从该校学生中随机抽取一个最关注热词D的学生的概率是

【解析】试题分析:(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;

(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D所对应的人数,即可解答;

(3)根据概率公式,即可解答.

试题解析:(1)105÷35%=300(人),

故答案为:300;

(2)n=300×30%=90(人),

m=300﹣105﹣90﹣45=60(人).

故答案为:60,90;

(3)从该校学生中随机抽取一个最关注热词D的学生的概率是=

答:从该校学生中随机抽取一个最关注热词D的学生的概率是

【题型】解答题
【结束】
26

已知正方形ABCD的边长为8,点E为BC的中点,连接AE,并延长交射线DC于点F,将△ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M.

(1)判断△AMF的形状并证明;

(2)将正方形变为矩形ABCD,且AB=6,BC=8,若B′恰好落在对角线AC上时,得到图2,此时CF=_____, =_____;

(3)在(2)的条件下,点E在BC边上.设BE为x,△ABE沿直线AE翻折后与矩形ABCD重合的面积为y,求y与x之间的函数关系式.

已知正方形ABCD的边长为8,点E为BC的中点,连接AE,并延长交射线DC于点F,将△ABE沿着直线AE翻折,点B落在B′处,延长AB′,交直线CD于点M.

(1)判断△AMF的形状并证明;

(2)将正方形变为矩形ABCD,且AB=6,BC=8,若B′恰好落在对角线AC上时,得到图2,此时CF=_____, =_____;

(3)在(2)的条件下,点E在BC边上.设BE为x,△ABE沿直线AE翻折后与矩形ABCD重合的面积为y,求y与x之间的函数关系式.

【答案】(1)△AMF是等腰三角形,理由见解析;(2)10, ;(3) .

【解析】试题分析:(1)利用正方形的性质,∠BAE=∠F,又因为∠BAE=∠MAE,所以可得,△AMF是等腰三角形.AC=CF,

(2)由(1)结论可知, ∴CF=AC=10,利用∠ACB的正弦求值.

(3)分类讨论,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积;当6<x≤8时,设EB交AD于M,重叠部分的面积=△ABE的面积减去△AB′M的面积,得到函数解析式.

试题解析:

【解析】
(1)结论:△AMF是等腰三角形.理由如下:

如图1中,

∵四边形ABCD是正方形,

∴AB∥DF,

∴∠BAE=∠F,

由翻折可知∠BAE=∠MAE,

∴∠F=∠MAE,

∴MA=MF,

∴△AMF是等腰三角形.

(2)如图2中,

由(1)可知△ACF是等腰三角形,AC=CF,

在Rt△ABC中,∵AB=6,BC=8,

∴AC==10,

∴CF=AC=10,

∵BE=BE′,

=sin∠ACB=

故答案为10,

(3)①如图3中,当0<x≤6时,△ABE翻折后都在矩形内部,所以重合部分面积就是三角形面积,

∴y=•6•x=3x,

∴y=3x.

②如图4中,当6<x≤8时,设EB交AD于M,

∴重叠部分的面积=△ABE的面积减去△AB′M的面积,

设B′M=a,则EM=x﹣a,AM=x﹣a,

在Rt△AB′M中,由勾股定理可得62+a2=(x﹣a)2,

∴a=

∴y=3x﹣×6×=x+

综上所述,y=

【题型】解答题
【结束】
27

(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.

(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;

(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

(2017辽宁省抚顺市,第25题,12分)如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON交于点B、点C,连接AB、PB.

(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;

(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;

(2)存在.证明方法类似(1);

(3)连接BQ.只要证明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出当BA⊥OM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:【解析】
(1)连接:AB=PB.理由:如图1中,连接BQ.

∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.

(2)存在,理由:如图2中,连接BQ.

∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.

(3)连接BQ.

易证△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴当BA⊥OM时, 的值最小,最小值为0.5,∴k=0.5.

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

【题型】解答题
【结束】
28

如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.

①求证:△ACD是直角三角形;

②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?

 0  319028  319036  319042  319046  319052  319054  319058  319064  319066  319072  319078  319082  319084  319088  319094  319096  319102  319106  319108  319112  319114  319118  319120  319122  319123  319124  319126  319127  319128  319130  319132  319136  319138  319142  319144  319148  319154  319156  319162  319166  319168  319172  319178  319184  319186  319192  319196  319198  319204  319208  319214  319222  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网