如图,若CD是Rt△ABC斜边CD上的高,AD=3cm,CD=4cm,则BC的长等于 cm.
如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE,若AD=10,AB=6,则tan∠EDF的值是 .
(1)sin230°+cos230°+tan30°tan60°
(2)tan45°sin45°﹣2sin30°cos45°.
在Rt△ABC中,∠C=90°,若sinA=.求cosA,sinB,tanB的值.
已知二次函数y=x2+bx+c的图象经过(1,1)与(2,3)两点,求这个二次函数的表达式.
如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.
①求作此残片所在的圆O(不写作法,保留作图痕迹);
②已知:AB=12cm,直径为20cm,求①中CD的长.
小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果保留根号)
某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金的总收入增加多少元?
如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,延长BO交⊙O于点A,点D为⊙O上一点,过点A作直线BD的垂线,垂足为C,AD平分∠BAC.
(1)求证:BC是⊙O的切线;
(2)求AC的长.
如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的最小,求此时P点坐标
及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)