一直角三角形放置在如图所示的平面直角坐标系中,直角顶点C刚好落在反比例函数y=的图像的一支上,两直角边分别交、轴于A、B两点.当CA=CB时,四边形CAOB的面积等于 .
如图,在平面直角坐标系中放置了5个正方形,点B1(0,2)在y轴上,点C1,E1,E2,C2,E3,E4,C3在x轴上,C1的坐标是(1, 0),B1C1∥B2C2∥B3C3.点A3到x轴的距离是 .
如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是 .
,
解方程:;解不等式组:
用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:线段c,直线l及l外一点A.
求作:Rt△ABC,使直角边为AC(AC⊥l ),垂足为C,斜边AB=c.
在“爱满江阴”慈善一日捐活动中,
某学校团总支为了了解本校学生的捐款情况,随机抽取了
50名学生的捐款数进行了统计,并绘制成下面的统计图.
(1)这50名同学捐款的众数为 ,中位数为 .
(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.
4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(2)在这4件产品中加入件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出的值大约是多少?
如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,
交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少