先化简,再求值:
,其中a,b满足.
如图,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.
(1)求点A的坐标和k的值;
(2)若点P为x轴上一动点.在双曲线上是否存在一点Q,使得△PAQ是以点A为直角顶点的等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,已知等腰△ABC,AC=BC=10.AB=12,以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求DF的长.
随着科技的不断发展,人与人的沟通方式也发生了很大的变化,盘锦市某中学九年级的一个数学兴趣小组在本年级学生中进行“学生最常用的交流方式”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与书信交流;D.电话交流.根据调查数据结果绘制成以下两幅不完整的统计图:
(1)本次调查,一共调查了 名同学,其中C类女生有 名,D类男生有 名;
(2)若该年级有学生150名,请根据调查结果估计这些学生中以“D.电话交流”为最常用的交流方式的人数约为多少?
(3)在本次调查中以“C.短信与书信交流”为最常用交流方式的几位同学中随机抽取两名同学参加盘锦市中学生书信节比赛,请用列举法求所抽取的两名同学都是男同学的概率.
如图,在菱形ABCD中,∠A=60°,点E,F分别是边AB,AD上的点,且满足∠BCE=∠DCF,连结EF.
(1)若AF=1,求EF的长;
(2)取CE的中点M,连结BM,FM,BF.求证:BM⊥FM.
如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)
(1)求抛物线的函数表达式和直线BC的函数表达式;
(2)当△CDE是直角三角形,且∠CDE=90° 时,求出点P的坐标;
(3)当△PBC的面积为时,求点E的坐标.
9的算术平方根为( )
A.3 B.±3 C.-3 D.81
下列运算中,结果是a5的是( )
A.a3•a2 B.a10÷a2 C.(a2)3 D.(-a)5
如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )
A.①② B.②③ C.①②③ D.①③