设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

⑴阅读填空

如图①,已知矩形ABCD,延长ADE,使DEDC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.

理由:连接AHEH

∵ AE为直径  ∴ ∠AHE=90°  ∴ ∠HAE+∠HEA=90°.

∵ DHAE  ∴ ∠ADH=∠EDH=90°

∴ ∠HAD+∠AHD=90°

∴ ∠AHD=∠HED  ∴ △ADH∽_____________.

∴ ,即AD×DE

又∵ DEDC  ∴ =____________,即正方形DFGH与矩形ABCD等积.

⑵操作实践

平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.

如图②,请用尺规作图作出与□ABCD等积的矩形(不要求写具体作法,保留作图痕迹).

⑶解决问题

三角形的“化方”思路是:先把三角形转化为等积的_________________(填写图形名称),再转化为等积的正方形.

如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).

⑷拓展探究

n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n-1边形,…,直至转化为等积的三角形,从而可以化方.

如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

 0  266548  266556  266562  266566  266572  266574  266578  266584  266586  266592  266598  266602  266604  266608  266614  266616  266622  266626  266628  266632  266634  266638  266640  266642  266643  266644  266646  266647  266648  266650  266652  266656  266658  266662  266664  266668  266674  266676  266682  266686  266688  266692  266698  266704  266706  266712  266716  266718  266724  266728  266734  266742  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网