(1)完成下面的证明:
已知:如图1,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.
求证:∠EGF=90°.
证明:∵HG∥AB,(已知)
∴∠1=∠3. (______ )
又∵HG∥CD,(已知)
∴∠2=∠4. (______)
∵AB∥CD,(已知)
∴∠BEF+______=180°.(______)
又∵EG平分∠BEF,(已知)
∴∠1=数学公式∠______.(______)
又∵FG平分∠EFD,(已知)
∴∠2=数学公式∠______.(______)
∴∠1+∠2=数学公式(______+______).
∴∠1+∠2=90°.
∴∠3+∠4=90°.(______).即∠EGF=90°.
(2)如图2,已知∠ACB=90°,那么∠A的余角是哪个角呢?答:______;
小明用三角尺在这个三角形中画了一条高CD(点D是垂足),得到图3,
①请你帮小明在图中画出这条高;
②在图中,小明通过仔细观察、认真思考,找出了三对余角,你能帮小明把它们写出来吗?答:a______;b______;c______.
③∠ACB,∠ADC,∠CDB都是直角,所以∠ACB=∠ADC=∠CDB,小明还发现了另外两对相等的角,请你也仔细地观察、认真地思考分析,试一试,能发现吗?把它们写出来,并请说明理由.
(3)在直角坐标系中,第一次将△OAB变换成OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
①观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为______,B4的坐标为______.
②按以上规律将△OAB进行n次变换得到△AnBn,则可知An的坐标为______,Bn的坐标为______.
③可发现变换的过程中A、A1、A2、…、An纵坐标均为______.

数学公式

 0  25806  25814  25820  25824  25830  25832  25836  25842  25844  25850  25856  25860  25862  25866  25872  25874  25880  25884  25886  25890  25892  25896  25898  25900  25901  25902  25904  25905  25906  25908  25910  25914  25916  25920  25922  25926  25932  25934  25940  25944  25946  25950  25956  25962  25964  25970  25974  25976  25982  25986  25992  26000  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网