【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
)(x>0).
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
(x>0)的图象和性质.
①填写下表,画出函数的图象;
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
(x>0)的最小值.
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.
0 158396 158404 158410 158414 158420 158422 158426 158432 158434 158440 158446 158450 158452 158456 158462 158464 158470 158474 158476 158480 158482 158486 158488 158490 158491 158492 158494 158495 158496 158498 158500 158504 158506 158510 158512 158516 158522 158524 158530 158534 158536 158540 158546 158552 158554 158560 158564 158566 158572 158576 158582 158590 366461
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+
①填写下表,画出函数的图象;
| x | … | 1 | 2 | 3 | 4 | … | |||
| y | … | … |
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.