多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:【小题1】∠BAC的度数;【小题2】百慕大三角的面积.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
计算:
如图,某人在一栋高层建筑顶部C处测得山坡坡脚A处的俯角为60°,又测得山坡上一棵小树树干与坡面交界P处的俯角为45°,已知OA=50米,山坡坡度为(即tan∠PAB=,其中PB⊥AB ),且O、A、B在同一条直线上. 【小题1】求此高层建筑的高度OC.(结果保留根号形式.);【小题2】求坡脚A处到小树树干与坡面交界P处的坡面距离AP的长度. (人的高度及测量仪器高度忽略不计,结果保留3个有效数字.)
每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位)
如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=600,坡长AB=20m,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=450,求AF的长度(结果精确到1米,参考数据,)
如图,一架飞机以200米/秒的速度由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了半分钟后到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.
如图,在正方形ABCD中, E是AB上一点,F是AD延长线上一点,且DF=BE=BC=1.【小题1】求证:CE=CF;【小题2】若G在AD上,连结GC,且∠GCE=45°,求∠GCF的度数【小题3】在(2)的条件下,求GC的长度.
如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米, 两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.【小题1】求坡屋顶高度CD的长度;【小题2】求斜面钢条AC的长度.(长度精确到0.1米)
计算:.