如图,某商标是由边长均为2的正三角形、正方形、正六边形的金属薄片镶嵌而成的镶嵌图案.(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O,那么点O落在镶嵌图案中的正方形区域的概率为多少?(结果保留二位小数)
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E. ⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=" " .(1)求证:CD∥BF;(2)求⊙O的半径;(3)求弦CD的长.
(本题满分9分)如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即和,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是?请你解答上述两个问题.
(本题满分8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD. (1)如图①,当PA的长度等于 时,∠PAB=60°;当PA的长度等于 时,△PAD是等腰三角形; (2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1 S3-S22的最大值,并求出此时a,b的值.
(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD. (1)弦长AB等于 ▲ (结果保留根号); (2)当∠D=20°时,求∠BOD的度数; (3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.
(2011•江汉区)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;(2)若AD=1,DE=3,求BD的长.
(2011•德州)●观察计算当a=5,b=3时,与的大小关系是>.当a=4,b=4时,与的大小关系是=.●探究证明如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.(1)分别用a,b表示线段OC,CD;(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).●归纳结论根据上面的观察计算、探究证明,你能得出与的大小关系是:.●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.
如图,已知⊙O的半径为2,弦BC的长为,点A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据: ,,.)
有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.
(2011•滨州)如图,直线PM切⊙O于点M,直线PO交⊙O于A、B两点,弦AC∥PM,连接OM、BC.求证:(1)△ABC∽△POM;(2)2OA2=OP•BC.