如图,在直角坐标平面中,O为坐标原点,二次函数 的图象与轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO。(1)求出B点坐标和这个二次函数的解析式(2)求出随的增大而减小的自变量的取值范围
用长度为32m的金属材料制成如图所示的金属框,下部为一个矩形,上部为一个等边三角形。当下部的矩形面积最大时,求矩形的AB、BC的边长各为多少m?并求此时整个金属框的面积是多少?
已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移 __________ 个单位.
已知抛物线y=ax2+bx+c ,当x=0时,有最小值为1 ;且在直线y=2上截得的线段长为4 .(1)求此抛物线的解析式;(2)若点P是抛物线的任意一点,记点P到X轴的距离为d1,点P 与点 F (0,2)的距离为d 2 ,猜想d1、 d 2的大小关系,并证明;(3)若直线PF交此抛物线于另一点Q(异于P点)。 试判断以PQ为直径的圆与x 轴的位置关系,并说明理由。
已知二次函数:(1) 证明:当m为整数时,抛物线与x轴交点的横坐标均为整数;(2) 以抛物线的顶点A为等腰Rt△的直角顶点,作该抛物线的内接等腰Rt△ABC(B、C两点在抛物线上),求Rt△ABC的面积(图中给出的是m取某一值时的示意图);(3) 若抛物线与直线y=7交点的横坐标均为整数,求整数m的值.
如图,已知梯形ABCD的下底边长AB=8cm,上底边长DC=1cm,O为AB的中点,梯形的高DO=4cm. 动点P自A点出发,在AB上匀速运行,动点Q自点B出发,沿B→C→D→A匀速运行,速度均为每秒1个单位,当其中一个动点到达终点时,另一动点也同时停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外).(1)求S随t变化的函数关系式及t的取值范围;(2)当t为何值时S的值最大?说明理由.
已知抛物线交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l. 在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)写出A,B,C三点的坐标;(2)若点P位于抛物线的对称轴的右侧:①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上.若存在,求出点P的坐标;若不存在,请说明理由.
已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-+交折线O-A-B于点E.(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;(3)问题(2)中的四边形DMEN中,ME的长为____________.
如图,已知抛物线y=ax+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,求:(1)抛物线解析式(2)若抛物线的顶点为P,求∠PAC的正切值(3)若以点A、C、P、M为顶点的四边形是平行四边形,求点M的坐标
如图,平面直角坐标系中,抛物线与轴交于点A、B(点A在点B左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段AC交于点N,点P为线段AC上一个动点(与A、C不重合) .(1)求点A、B的坐标;(2)在抛物线的对称轴上找一点D,使|DC-DA|的值最大,求点D的坐标;(3)过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点的坐标.