某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地 累积总产量y (吨)与收获天数x (天)满足函数关系y=2x+3 (1£x£10且x为整数).该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
|
| 该基地的累积产量占 两基地累积总产量的百分比 | 该基地累积存入仓库的量占 该基地的累积产量的百分比 |
|
| ||
| 种植基地 | ||
| 甲 | 60% | 85% |
| 乙 | 40% | 22.5% |
(1) 请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;
(2) 设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨) 与收获天数x(天)的函数关系式;
(3) 在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m= -x2+13.2x-1.6 (1£x£10且x为整数). 问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?
如图(1),两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1. 固定△ABC不动,分别按如下操作画出图形并进行解答:
(1) 图(2)中,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断地变化,但它的面积不变化,请求出其面积.
(2)图(3)中,当D点移到AB的中点时,请你探究四边形CDBF的形状,并说明理由.