题目内容

6.矩形的两条对角线的夹角为60°,较短的边长为1cm,则矩形的面积为$\sqrt{3}$cm2

分析 由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=AB=1cm,由勾股定理求出BC,即可得出结果.

解答 解:如图所示:
∵四边形ABCD是矩形,
∴∠ABC=90°,OA=OC=$\frac{1}{2}$AC,OB=OD=$\frac{1}{2}$BD,AC=BD,
∴OA=OB,
又∵∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB=1cm,
∴AC=2OA=2cm,
∴BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴矩形ABCD的面积=AB•BC=1×$\sqrt{3}$=$\sqrt{3}$(cm2);
故答案为:$\sqrt{3}$.

点评 本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,由勾股定理求出BC是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网