题目内容
不等式3x≤2(x﹣1)的解集为( )
A.x≤﹣1 B. x≥﹣1 C. x≤﹣2 D. x≥﹣2
C.
A、B两地相距20千米,甲、乙两人都从A地去B地,图中和分别表示甲、乙两人所走路程(千米)与时刻(小时)之间的关系。下列说法:乙晚出发1小时;乙出发3小时后追上甲;甲的速度是4千米/小时;乙先到达B地。其中正确的个数是( )
A.1 B. 2 C. 3 D. 4
如图,点M(﹣3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.
(1)求反比例函数表达式;
(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.
①当a=4时,求△ABC′的面积;
②当a的值为 时,△AMC与△AMC′的面积相等.
甲、乙两台机器分别灌装每瓶质量为500克的酸奶,从甲、乙灌装的酸奶中分别随机抽取了30瓶,测得它们实际质量的方差是:S甲2=4.8,S乙2=3.6,那么 (填“甲”或“乙”)机器灌装的酸奶质量较稳定.
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.
(1)求直线DE的解析式和点M的坐标;
(2)若反比例函数y=(x>0)的图象经过点M,
求该反比函数的解析式,并通过计算判断点
N是否在该函数的图象上.
一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过( )
A.12mm B. 12mm C. 6mm D. 6mm
圆心角为120°,半径为6cm的扇形的弧长是
一组数据2,3,1,2,2的中位数、众数和方差分别是( )
A.1,2,0.4 B. 2,2,4.4 C. 2,2,0.4 D. 2,1,0.4
如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A1B1C1.
(1)△ABC与△A1B1C1的位似比等于 ;
(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;
(3)请写出△A1B1C1是由△A2B2C2怎样平移得到的?
(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为