题目内容
9.抛物线y=ax2(a≠0)是一条不经过一、二象限的抛物线,则点(-a,a-1)在第四象限.分析 根据抛物线y=ax2(a≠0)是一条不经过一、二象限的抛物线,可得a<0,据此判断出点(-a,a-1)在第几象限即可.
解答 解:∵抛物线y=ax2(a≠0)是一条不经过一、二象限的抛物线,
∴a<0,
∴-a>0,a-1<0,
∴点(-a,a-1)在第四象限.
故答案为:四.
点评 此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
练习册系列答案
相关题目
20.今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n,则n的值是( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
6.
如图,标有数字①~⑨的正方形与标有字母A,B,C,D的正方形大小均相同.现从标有数字的9个正方形中等可能的任选一个,则所选正方形与标有字母的正方形所组成的图形恰可以是一个无盖的正方体的表面展开图,且没有盖的一面恰好与标有字母“A”的一面相对的概率为 ( )
| A. | $\frac{4}{9}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{1}{2}$ |
3.我市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济、环保的沼气能源.红星村共有264户村民,村里得到34万元的政府资助款,不足部分由村民集资解决.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用的户数、修建用地情况见下表:
政府土地部门只批给该村沼气池修建用地708m2.若修建A型沼气池x个,修建两种型号沼气池共需费用y万元.
(1)求y与x之间的函数关系式;
(2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种?
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?
| 沼气池 | 修建费用(万元/个) | 可供使用户数(户/个) | 占地面积(m2/个) |
| A型 | 3 | 20 | 48 |
| B型 | 2 | 3 | 6 |
(1)求y与x之间的函数关系式;
(2)既不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种?
(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?
4.已知直线y=2x与y=-x+b的交点为(-1,a),则方程组$\left\{\begin{array}{l}{y-2x=0}\\{y+x-b=0}\end{array}\right.$的解为( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$ |