题目内容
把下列各式分解因式:
(1) (2)ma3+12ma2+36ma
如图,两个大小一样的直角三角形重叠在一起,将其中一个直角三角形沿着点B到点C的方向平移到三角形DEF的位置.AB=10,DH=4,平移的距离为6,则阴影部分的面积为( )
A. 48 B. 96 C. 84 D. 42
若,则x2009+2009 =________________.
材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2.
例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72
材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.
根据材料回答:
(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;
(2)试证明10不是雪松数;
(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.
如图,分别以Rt△ABC的斜边AB、直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB边的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.
(1)求证:EF=AB;
(2)求证:四边形ADFE为平行四边形;
(3)若AB=2,求△AEG的周长.
如图,在平行四边形ABCD中,,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为
A. B. C. 4 D. 8
下列多项式中不能用公式进行因式分解的是( )
A. a2+a+ B. a2+b2-2ab C. D.
若x2﹣16x+m2是一个完全平方式,则m=_____;若m﹣=9,则m2+=_____.
如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B处测得M的仰角为31°,已知每层楼的窗台离该层的地面高度均为1 m.
(1)AB=________m;
(2)求旗杆MN的高度.(结果保留两位小数)
(参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)