题目内容

如图,直线y=﹣x+3与x轴,y轴分别相交于点B,C,经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.

(1)求该抛物线的函数表达式;

(2)请问在抛物线上是否存在点Q,使得以点B,C,Q为顶点的三角形为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由;

(3)过S(0,4)的动直线l交抛物线于M,N两点,试问抛物线上是否存在定点T,使得不过定点T的任意直线l都有∠MTN=90°?若存在,请求出点T的坐标;若不存在,请说明理由.

(1)y=x2﹣4x+3;(2)存在;(3)存在点T(4,3)使得不过定点T的任意直线l都有∠MTN=90°. 【解析】试题分析:(1)根据坐标轴上点的坐标特征可求,,再根据待定系数法可求抛物线的函数表达式; (2)存在,分三种情况:过B点垂直BC的直线的解析式为y=x+b,过C点垂直BC的直线解析式为y=x+3,以BC为斜边,进行讨论可求点Q的坐标; (3)设M(x1,y1),...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网