题目内容
如图6,在平面直角坐标系中, 的顶点(,0)、(,1)。将绕点O顺时针旋转后,点、分别落在、.
(1)在图中画出旋转后的;
(2)求线段所扫过的图形的面积.
下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4因式分解的过程.
【解析】设x2-4x=y,
则原式=(y+2)(y+6)+4(第一步)
=y2+8y+16(第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
解答下列问题:
(1)该同学第二步到第三步运用了因式分解的方法是( )
A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”).若不彻底,请直接写出因式分解的最后结果;
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
【答案】(1)C;(2)不彻底,(x-2)4;(3)(x-1)4.
【解析】试题分析:(1)从二步到第三步运用了完全平方和公式;(2)x2-4x+4可运用完全平方差公式因式分解;(3)设x2-2x=y,将(x2-2x)(x2-2x+2)+1变形成y(y+2)+1的形式,再进行因式分解;
试题解析:
(1)运用了C,两数和的完全平方公式;
(2)不彻底;
(x2-4x+4)2=(x-2)4
(3)设x2-2x=y.
(x2-2x)(x2-2x+2)+1
=y(y+2)+1
=y2+2y+1
=(y+1)2…………………………7分
=(x2-2x+1)2
=(x-1)4.
【题型】解答题【结束】24
乘法公式的探究及应用.
探究问题
图1是一张长方形纸条,将其剪成长短两条后刚好能拼成图2.
(1) (2)
(1)图1中长方形纸条的面积可表示为_______(写成多项式乘法的形式).
(2)拼成的图2阴影部分的面积可表示为________(写成两数平方差的形式).
(3)比较两图阴影部分的面积,可以得到乘法公式:____.
结论运用
(4)运用所得的公式计算:
=________; =________.
拓展运用:
(5)计算:
已知a≠0,
(1)抛物线y=ax2的顶点坐标为______,对称轴为______.
(2)抛物线y=ax2+c的顶点坐标为______,对称轴为______.
(3)抛物线y=a(x-m)2的顶点坐标为______,对称轴为______.
一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )
A. 6条 B. 7条 C. 8条 D. 9条
六边形共有几条对角线( )
A. 6 B. 7 C. 8 D. 9
如图,抛物线与轴交于点A(-1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①当时, ;②;③;④中,正确的是_______.
如图2,点、、在⊙O上, ∥, ,则的度数是
A. 25° B. 30° C. 35° D. 40°
三角形的三个外角中,最多有_______个锐角.
二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
A. 函数有最小值 B. 对称轴是直线x=
C. 当x<时,y随x的增大而减小 D. 当-1<x<2时,y>0