题目内容
如图,BD垂直平分线段AC,AE⊥BC,垂足为E,交BD于P点,PE=3cm,则P点到直线AB的距离是________cm.
3
分析:由已知条件,根据垂直平分线的性质得出AB=AC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.
解答:过点P作PM⊥AB与点M,
∵BD垂直平分线段AC,
∴AB=CB,
∴∠ABD=∠DBC,即BD为角平分线,
又PM⊥AB,PE⊥CB,
∴PM=PE=3.
故填3.
点评:此题主要考查线段的垂直平分线的性质等几何知识.得到三角形全等是正确解答本题的关键,也可直接应用角平分线的性质求解.
分析:由已知条件,根据垂直平分线的性质得出AB=AC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.
解答:过点P作PM⊥AB与点M,
∵BD垂直平分线段AC,
∴AB=CB,
∴∠ABD=∠DBC,即BD为角平分线,
又PM⊥AB,PE⊥CB,
∴PM=PE=3.
故填3.
点评:此题主要考查线段的垂直平分线的性质等几何知识.得到三角形全等是正确解答本题的关键,也可直接应用角平分线的性质求解.
练习册系列答案
相关题目