题目内容

如图,△ABC和△A′B′C′关于直线对称,下列结论中:
①△ABC≌△A′B′C′;
②∠BAC′=∠B′AC;
③l垂直平分CC′;
④直线BC和B′C′的交点不一定在l上,
正确的有(  )
A、4个B、3个C、2个D、1个
考点:轴对称的性质
专题:
分析:根据关于某直线成轴对称的两个图形能够完全重合对各小题分析判断即可得解.
解答:解:∵△ABC和△A′B′C′关于直线l对称,
∴①△ABC≌△A′B′C′,正确;
②∠BAC=∠B′AC′,
∴∠BAC+∠CAC′=∠B′AC′+∠CAC′,
即∠BAC′=∠B′AC,正确;
③l垂直平分CC′,正确;
④应为:直线BC和B′C′的交点一定在l上,故本小题错误.
综上所述,结论正确的是①②③共3个.
故选B.
点评:本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网