题目内容

精英家教网如图,设P是等边△ABC的一边BC上的任意一点,连接AP,它的垂直平分线交AB、AC于M、N两点,求证:BP•PC=BM•CN.
分析:连接PM,PN,证明△AMN≌△PMN,再证△MPB∽△PNC,即可得出结论.
解答:精英家教网证明:连接PM,PN,
∵MN垂直平分AP,
∴AM=MP,AN=PN,又MN为公共边,
∴△AMN≌△PMN(SSS),
∴∠MPN=∠BAC=60°,
∵∠BPM+∠CPN=120°,∠BPM+∠BMP=120°,
∴∠BMP=∠CPN,
由∠B=∠C=60°,
∴△MPB∽△PNC,
BP
NC
=
BM
PC

即BP•PC=BM•NC.
点评:本题主要考查了相似三角形的判定及性质以及等边三角形的性质等问题,能够熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网