题目内容

如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.有下列结论:
①∠DEO=45°;②△AOD≌△COE;③S四边形CDOE=
1
2
S△ABC;④OD2=OP•OC.
其中正确的结论序号为
 
.(把你认为正确的都写上)
考点:全等三角形的判定与性质,等腰直角三角形,相似三角形的判定与性质
专题:
分析:证△AOD≌△COE,推出OD=OE,即可判断①②;根据全等得出两三角洲的面积相等,即可推出△ACB的面积=四边形CDOE的面积的2倍,即可判断③;证△OEP∽△OCE,
得出比例式,即可判断④.
解答:解:∵在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,
∴∠A=∠B=∠ACO=°,OA=OC=OB,∠AOC=90°=∠DOE,
∴∠AOD=∠COE=90°-∠DOC,
在△AOD与△COE中,
∠OAD=∠OCE
OA=OC
∠AOD=∠COE

∴△AOD≌△COE(ASA),
∴OD=OE,
∵∠EOD=90°,
∴∠DEO=45°,
∵△AOD≌△COE,∴S△AOD=S△COE
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=
1
2
S△ABC
∵△DOE为等腰直角三角形,
∴∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
OE
OP
=
OC
OE
,即OP•OC=OE2
即①②③④都正确;
故答案为:①②③④.
点评:本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网