题目内容
| (a+b)2 |
| a2 |
考点:二次根式的性质与化简,实数与数轴
专题:
分析:首先根据数轴确定a和b的符号以及a+b的符号,然后利用绝对值的性质化简.
解答:解:根据数轴可得:a>0,b<0,且|a|<|b|,
则a+b<0.
则原式=-b-(a+b)+a=-b-a-b+a=-2b.
故答案是:-2b.
则a+b<0.
则原式=-b-(a+b)+a=-b-a-b+a=-2b.
故答案是:-2b.
点评:本题考查了有理数的加法法则以及绝对值的性质,正确去掉绝对值符号是关键.
练习册系列答案
相关题目
已知4个数中:(-1)2005,|-2|,π,-32,其中正数的个数有( )
| A、1 | B、2 | C、3 | D、4 |
若关于x的方程
-
=0有增根,则a的值是( )
| a-3 |
| x-3 |
| x |
| x-3 |
| A、3 | B、6 | C、-6 | D、-3 |
| A、20° | B、35° |
| C、70° | D、110° |