题目内容
如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2,AE=6,求EC的长.
如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是 .
已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时∠AOE=48°,则α的度数是( )
A.60° B.51° C.48° D.76°
用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是( )
A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9
如图,AB是⊙O的直径,MN切⊙O于点C,且∠BCM=38°,求∠ABC的度数.
如果⊙O的直径为6厘米,圆心O到直线AB的距离为6厘米,那么⊙O与直线AB的位置关系是 .
圆心相同,半径不相等的两个圆叫做同心圆,用大圆的面积减去小圆的面积就是圆环的面积.
(1)如图1,大圆的弦AB切小圆于点P,求证:AP=BP;
(2)若AB=2a,请用含有a的代数式表示图1中的圆环面积;
(3)如图2,若大圆的弦AB交小圆于C、D两点,且AB=8,CD=6,则圆环的面积为 ____ .
某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次.设每月的平均增长率为x,则可列方程为( )
A.25(1+x)2=64 B.25(1﹣x)2=64
C.64(1+x)2=25 D.64(1﹣x)2=25