题目内容

如图,从⊙O外一点P引圆的两条切线PA、PB,切点为A、B,点C是劣弧AB上一点,过C的切线交PA、PB分别于M、N,若⊙O的半径为2,∠P=60°,则△PMN的周长为


  1. A.
    4
  2. B.
    6
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:连接OP,由圆外一点P作圆的两条切线PA与PB,根据切线长定理得到PA=PB,且PO为角平分线,由∠APB=60°,得到∠APO=30°,再由切线的性质得到OA与AP垂直,在直角三角形APO中,根据30°角所对的直角边等于斜边的一半,由半径OA的长求出斜边OP的长,再利用勾股定理求出AP的长,由MA与MC为圆O的切线,根据切线长定理得到MA=MC,同理可得NB=NC,然后把三角形PMN的三边相加表示出三角形PMN的周长,等量代换后得到其周长为2PA,把PA的长代入即可求出三角形PMN的周长.
解答:连接OP,

∵PA,PB为圆O的切线,
∴PA=PB,PO平分∠APB,OA⊥AP,
又∠APB=60°,
∴∠APO=30°,
在直角三角形APO中,OA=2,
∴OP=2OA=4,
根据勾股定理得:PA==2
∵MA,MC为圆O的两条切线,
∴MA=MC,
又NB,NC为圆O的切线,
∴NC=NB,
∴△PMN的周长=PM+PN+MN
=PM+PN+MC+NC
=PM+PN+MA+NB
=PA+PB=2PA
=4
故选C
点评:此题考查了切线长定理,切线的性质,勾股定理,含30°角直角三角形的性质,利用了转化的思想,熟练掌握切线长定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网