题目内容
(1)求证:PA平分∠BAC的外角∠CAM;
(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.
考点:角平分线的性质,等腰三角形的判定与性质
专题:证明题
分析:(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,根据角平分线性质求出PQ=PS=PT,根据角平分线性质得出即可;
(2)根据ASA求出△AED≌△AEC即可.
(2)根据ASA求出△AED≌△AEC即可.
解答:证明:(1)
过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,
∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,
∴PQ=PT,PS=PT,
∴PQ=PS,
∴AP平分∠DAC,
即PA平分∠BAC的外角∠CAM;
(2)∵PA平分∠BAC的外角∠CAM,
∴∠DAE=∠CAE,
∵CE⊥AP,
∴∠AED=∠AEC=90°,
在△AED和△AEC中
∴△AED≌△AEC,
∴CE=ED.
过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,
∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,
∴PQ=PT,PS=PT,
∴PQ=PS,
∴AP平分∠DAC,
即PA平分∠BAC的外角∠CAM;
(2)∵PA平分∠BAC的外角∠CAM,
∴∠DAE=∠CAE,
∵CE⊥AP,
∴∠AED=∠AEC=90°,
在△AED和△AEC中
|
∴△AED≌△AEC,
∴CE=ED.
点评:本题考查了角平分线性质和全等三角形的性质和判定的应用,解此题的关键是能正确作出辅助线并进一步求出PQ=PS和△AED≌△AEC,注意:角平分线上的点到角两边的距离相等.
练习册系列答案
相关题目
如果几个最简二次根式的被开方数相同,那么这几个最简二次根式叫做同类二次根式.下列各组根式中,最同类二次根式的是( )
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
下列计算正确的是( )
| A、x2+x3=x5 |
| B、x2•x3=x5 |
| C、(x2)3=x5 |
| D、x6÷x2=x3 |