题目内容
二次函数y=x2﹣4x的顶点坐标是 .
反比例函数的图象在第一、三象限,则m的取值范围是 .
任意放置以下几何体:正方体、圆柱、圆锥,则三视图都完全相同的几何体是 .
以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是( )
A.10 B.11 C.12 D.13
如图,菱形ABCD的对角线交于O点,DE∥AC,CE∥BD,
(1)求证:四边形OCED是矩形;
(2)若AD=5,BD=8,计算sin∠DCE的值.
如图,在矩形ABCD中,已知AB=3,BC=4,将矩形ABCD绕着点D在桌面上顺针旋砖至A1B1C1D,使其停靠在矩形EFGH的点E处,若∠EDF=30°,则点B的运动路径长为( )
A.π B.π C.π D.π
在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是( )
A.8 B.12 C.16 D.20
抛物线y=x2﹣2x+m与坐标轴有两个公共点,则m的值是 .
已知关于x的一元二次方程2x2+(a+4)x+a=0.
(1)求证:无论a为任何实数,此方程总有两个不相等的实数根;
(2)抛物线与x轴的一个交点的横坐标为,其中a≠0,将抛物线C1向右平移个单位,再向上平移个单位,得到抛物线C2.求抛物线C2的解析式;
(3)点A(m,n)和B(n,m)都在(2)中抛物线C2上,且A、B两点不重合,求代数式2m3﹣2mn+2n3的值.