题目内容
【题目】如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.
![]()
【答案】(1)∠BAD=54°;(2)见解析
【解析】
(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.
(2)根据角平分线得到∠ABE=∠EBC,根据平行线的性质得到∠EBC=∠BEF,从而证明∠FBE=∠FEB即可解决问题.
解:(1)∵AB=AC,
∴∠C=∠ABC,
∵∠C=36°,
∴∠ABC=36°,
∵D为BC的中点,
∴AD⊥BC,
∴∠BAD=90°∠ABC=90°36°=54°.
∴∠BAD=54°;
(2)∵BE平分∠ABC,
∴∠ABE=∠EBC,
又∵EF∥BC,
∴∠EBC=∠BEF,
∴∠EBF=∠FEB,
∴BF=EF.
练习册系列答案
相关题目
【题目】某工厂设门市部专卖某产品,该每件成本每件成本30元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:
销售单位(元) | 50 | 60 | 70 | 75 | 80 | 85 | … |
日销售量 | 300 | 240 | 180 | 150 | 120 | 90 | … |
假设每天定的销价是不变的,且每天销售情况均服从这种规律.
(1)秋日销售量与销售价格之间满足的函数关系式;
(2)门市部原设定两名销售员,担当销售量较大时,在每天售出量超过198件时,则必须增派一名营业员才能保证营业有序进行.设营业员每人每天工资为40元,求每件产品应定价多少元,才能使每天门市部纯利润最大?(纯利润=总销售﹣成本﹣营业员工资)