题目内容
观察式子:
(1)x2-1=(x-1)(x+1),∴
=
(2)x3-1=(x-1)(x2+x+1),∴
=
(3)x3-1=(x-1)( ),∴
=x-1;
(4)猜想:xn-1=(x-1)( ),∴
=x-1.
如果要计算210-29+…+1的值,你能用一个两项式表达210-29+…+1的值吗?
(1)x2-1=(x-1)(x+1),∴
| x2-1 |
| x+1 |
x-1
x-1
;(2)x3-1=(x-1)(x2+x+1),∴
| x3-1 |
| x2+x+1 |
x-1
x-1
;(3)x3-1=(x-1)( ),∴
| x4-1 |
| x3+x2+x+1 |
(4)猜想:xn-1=(x-1)( ),∴
| xn-1 |
| ( ) |
如果要计算210-29+…+1的值,你能用一个两项式表达210-29+…+1的值吗?
分析:根据分式的约分得到(1)
=x-1;(2)
=x-1;(3)
=x-1;(4)xn-1=(x-1)(xn-1+xn-2+…+x+1),∴
=x-1;根据上面的规律得到(-2)11-1=[(-2)-1)][(-2)10+(-2)9+…+(-2)+1]=(-3)(210-29+…+1),则210-29+…+1=
(211-1).
| x2-1 |
| x+1 |
| x3-1 |
| x2+x+1 |
| x4-1 |
| x3+x2+x+1 |
| xn-1 |
| xn-1+xn-2+…+x+1 |
| 1 |
| 3 |
解答:解:(1)x2-1=(x-1)(x+1),∴
=x-1;
(2)x3-1=(x-1)(x2+x+1),∴
=x-1;
(3)x4-1=(x-1)(x3+x2+x+1),∴
=x-1;
(4)猜想:xn-1=(x-1)(xn-1+xn-2+…+x+1),∴
=x-1;
当n=11,x11-1=(x-1)(x10+x9+…+x+1),
令x=-2,则(-2)11-1=[(-2)-1)][(-2)10+(-2)9+…+(-2)+1]=(-3)(210-29+…+1),
所以210-29+…+1=
=
(211-1).
故答案为x-1,x-1.
| x2-1 |
| x+1 |
(2)x3-1=(x-1)(x2+x+1),∴
| x3-1 |
| x2+x+1 |
(3)x4-1=(x-1)(x3+x2+x+1),∴
| x4-1 |
| x3+x2+x+1 |
(4)猜想:xn-1=(x-1)(xn-1+xn-2+…+x+1),∴
| xn-1 |
| xn-1+xn-2+…+x+1 |
当n=11,x11-1=(x-1)(x10+x9+…+x+1),
令x=-2,则(-2)11-1=[(-2)-1)][(-2)10+(-2)9+…+(-2)+1]=(-3)(210-29+…+1),
所以210-29+…+1=
| (-2)11-1 |
| -3 |
| 1 |
| 3 |
故答案为x-1,x-1.
点评:本题考查了分式的混合运算:先把分式的分子或分母因式分解(有括号,先算括号),再进行分式的乘除运算,然后进行分式的加减运算.
练习册系列答案
相关题目