题目内容
如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.
![]()
如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.
![]()
如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.
![]()
如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是_________.
![]()
如图,在△ABC中,点D在BC上且AB=AD,AC=AE,∠BAD=∠CAE,DE=12,CD=4,则BD=_________.
![]()
等腰三角形的一个内角为80°,则顶角的度数是_________.
查看答案 试题属性- 题型:解答题
- 难度:中等
在数轴上有三个点A,B,C,分别表示﹣3,0,2.按下列要求回答:
(1)点A向右移动6个单位后,三个点表示的数谁最大?
(2)点C向左移动3个单位后,这时点B表示的数比点C表示的数大多少?
(3)怎样移动点A,B,C中的两个点,才能使三个点所表示的数相同?有几种办法?分别写出来.
(1)A;(2)1;(3)3种,具体见解析. 【解析】试题分析:画出数轴,标出A、B、C三点,然后根据变化规律求解,(1)中注意A点的移动后的坐标;(2)中先求出C移动后的数为-1,然后比较即可;(3)分情况变化比较即可. 试题解析:(1)点A表示的数最大,是+3. (2)C移动后是-2,B点比C点大1.[0-(-1)=1] (3)有三种方法:①种:将A向右移动3个单位,C向左移动...计算
(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);
(2)
;
(3)
;
(4)
.
把下列各数填入相应的大括号内:
,
,﹣0.01,
,7,1,﹣(﹣4),+(﹣1)
正数集合{ …}
负数集合{ …}
非负整数集合{ …}
分数集合{ …}.
查看答案把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是_____cm.(用m或n的式子表示).
![]()
单项式﹣2xy5的系数是m,次数是n,则m﹣n=_____.
查看答案一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是_____.
查看答案 试题属性- 题型:解答题
- 难度:困难
抛物线
的部分图象如图所示,若
,则
的取值范围是( ).
![]()
A.
B.
C.
或
D.
或![]()
如图,已知
是⊙
的直径,过点
的弦
平行于半径
,若
,则
等于( ).
![]()
A.
B.
C.
D. ![]()
在平面直角坐标系中,若⊙
是以原点为圆心,
为半径的圆,则点
在( ).
A. ⊙
内 B. ⊙
外 C. ⊙
上 D. 不能确定
如图,已知
的半径
,
,则
所对的弧
的长为( )
![]()
A.
B.
C.
D. ![]()
如图,
,
,
交于
,
,
,
,则
长为( ).
![]()
A.
B.
C.
D. ![]()
将抛物线
先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ).
A.
B.
C.
D. ![]()
- 题型:单选题
- 难度:中等
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
![]()
如图,在直角坐标平面内,已知点A(8,0),点B(3,0),点C是点A关于直线m(直线m上各点的横坐标都为3)的对称点.
(1)在图中标出点A,B,C的位置并求出点C的坐标;
(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,那么当△BCD的面积等于10时,求点P的坐标.
![]()
将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.
![]()
如图:△ABC和△ADE是等边三角形,AD是BC边上的中线.求证:BE=BD.
![]()
- 题型:单选题
- 难度:简单
等腰三角形的一个内角为80°,则顶角的度数是_________.
80°或20° 【解析】试题分析:分80°角是顶角与底角两种情况讨论求解. 试题解析:①80°角是顶角时,三角形的顶角为80°, ②80°角是底角时,顶角为180°-80°×2=20°, 综上所述,该等腰三角形顶角的度数为80°或20°.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D=________.
![]()
如图,要测量池塘两端A,B的距离,可先在平地上取一个可以直接到达A,B两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是____________.
![]()
如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下面结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是( )
![]()
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:
①如果添加条件“AB=AC”,那么△ABC是等边三角形;
②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;
③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.
上述说法中,正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案 试题属性- 题型:填空题
- 难度:简单
如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
C 【解析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可. ∵△ABC≌△AEF, ∴AC=AF,EF=BC,∠EAF=∠BAC,故(1)(3)正确, ∴∠EAF-∠BAF=∠BAC-∠BAF, 即∠EAB=∠FAC,故(4)正确, 只有AF平分∠BAC时,∠FAB=∠EAB正确,故(2)错误. 综上所述,正确的是(1)(3)(4)共3个. 故选C. ...在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( )
A. (1,2) B. (﹣1,﹣2) C. (﹣1,2) D. (﹣2,1)
查看答案如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
![]()
A. 15 B. 30 C. 45 D. 60
查看答案下列条件中,不能判定两个直角三角形全等的是( )
A. 两直角边对应相等 B. 斜边和一条直角边对应相等
C. 两锐角对应相等 D. 一个锐角和斜边对应相等
查看答案一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( )
A. 7 B. 8 C. 9 D. 10
查看答案一副三角板如图叠放在一起,则图中∠α的度数为( )
![]()
A. 35° B. 30° C. 25° D. 15°
查看答案 试题属性- 题型:单选题
- 难度:中等