题目内容

3.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.
求证:BD=CE.

分析 先根据图形旋转的性质得出∠BAD=∠CAE=100°,再由SAS定理得出△ABD≌△ACE,由全等三角形的性质即可得出结论.

解答 证明:∵△ABC绕点A按逆时针方向旋转100°得△ADE,
∴∠BAD=∠CAE=100°.
又∵AB=AC,
∴AB=AC=AD=AE.  
在△ABD与△ACE中,
∵$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS).
∴BD=CE.

点评 本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网