题目内容
计算:(1)
÷
×
(2)(
-x+1)÷
.
| x+2 |
| x2-6x+9 |
| 1 |
| 3-x |
| x-3 |
| x+2 |
| x2-1 |
| x2-2x+1 |
| x |
| x-1 |
分析:(1)首先将能因式分解的分子与分母进行分解因式,再化简即可;
(2)首先将括号里面进行化简再通分,将能因式分解的分子与分母进行分解因式,再化简即可.
(2)首先将括号里面进行化简再通分,将能因式分解的分子与分母进行分解因式,再化简即可.
解答:解:(1)
÷
×
=
×(3-x)×
=-1;
(2)(
-x+1)÷
=[
-
]×
=
×
=-x+3.
| x+2 |
| x2-6x+9 |
| 1 |
| 3-x |
| x-3 |
| x+2 |
=
| x+2 |
| (x-3)2 |
| x-3 |
| x+2 |
=-1;
(2)(
| x2-1 |
| x2-2x+1 |
| x |
| x-1 |
=[
| (x-1)(x+1) |
| (x-1)2 |
| (x-1)2 |
| x-1 |
| x-1 |
| x |
=
| -x2+3x |
| x-1 |
| x-1 |
| x |
=-x+3.
点评:此题主要考查了分式的混合运算,正确根据分式的基本性质分解因式是解题关键.
练习册系列答案
相关题目