题目内容

17.如图,四个有理数在数轴上的对应点分别是M、N、P、Q,若点M,Q表示的有理数互为相反数,则图中表示绝对值最小的数的点是N.

分析 首项根据点M,Q表示的有理数互为相反数,可得点M,Q表示的有理数的绝对值相等,所以点M,Q的中点即是原点;然后根据图示,可得点N和点M之间的距离大于点P和点Q之间的距离,所以点N离原点最近,所以图中表示绝对值最小的数的点是N,据此解答即可.

解答 解:因为点M,Q表示的有理数互为相反数,
所以点M,Q的中点即是原点;
因为点N和点M之间的距离大于点P和点Q之间的距离,
所以点N离原点最近,
所以图中表示绝对值最小的数的点是N.
故答案为:N.

点评 (1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.
(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
(4)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:互为相反数的两个数的绝对值相等,且它们的和等于0.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网