ÌâÄ¿ÄÚÈÝ
9£®£¨1£©ÇóÅ×ÎïÏßC2µÄ½âÎöʽ£»
£¨2£©Å×ÎïÏßC2ÓëxÖá½»ÓÚA£¬BÁ½µã£¨µãBÔÚµãAµÄÓҲࣩ£¬ÇóµãA£¬BµÄ×ø±ê¼°¹ýµãA£¬B£¬CµÄÔ²µÄÔ²ÐÄEµÄ×ø±ê£»
£¨3£©ÔÚ¹ýµã£¨0£¬$\frac{1}{2}$£©ÇÒÆ½ÐÐÓÚxÖáµÄÖ±ÏßÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹ËıßÐÎCEBFΪÁâÐΣ¿Èô´æÔÚ£¬Çó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèD£¨a£¬-$\frac{1}{2}$a2£©£¬½ø¶øÇó³öaµÄÖµµÃ³öº¯Êý½âÎöʽ¼´¿É£»
£¨2£©ÀûÓÃy=0Çó³öA£¬Bµã×ø±ê£¬ÔÙÀûÓÃ|CE|=|AE|£¬Çó³ömµÄÖµ½ø¶øµÃ³ö´ð°¸£»
£¨3£©ÀûÓÃÁâÐεÄÐÔÖʽáºÏ|BF|=|CF|=|CE|£¬ÔÙÇó³ö|FC|£¬½ø¶øµÃ³ö´ð°¸£®
½â´ð
½â£º£¨1£©ÓÉÌâÒâÉèD£¨a£¬-$\frac{1}{2}$a2£©£¬
¼ÙÉèÅ×ÎïÏßC2µÄ½âÎöʽΪ£ºy=£¨x-a£©2-$\frac{1}{2}$a2£¬
¡ßµãCÔÚÅ×ÎïÏßC2ÉÏ£¬
¡à½«C£¨0£¬2£©´úÈëÉÏʽ£¬
½âµÃ£ºa=¡À2£¬
¡ßµãDÔÚyÖáÓҲ࣬
¡àa=2£¬
¡àÅ×ÎïÏßC2µÄ½âÎöʽΪ£ºy=£¨x-2£©2-2£»
£¨2£©ÓÉÌâÒ⣬ÔÚy=£¨x-2£©2-2ÖУ¬Áîy=0£¬Ôòx=2¡À$\sqrt{2}$£¬
¡ßµãBÔÚµãAµÄÓҲ࣬
¡àA£¨2-$\sqrt{2}$£¬0£©£¬B£¨2+$\sqrt{2}$£¬0£©£¬
ÓÖ¡ß¹ýµãA£¬B£¬CµÄÔ²µÄÔ²ÐÄÒ»¶¨ÔÚÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬
¡àÉèE£¨2£¬m£©£¬ÇÒ|CE|=|AE|£¬
Ôò22+£¨2-m£©2=m2+£¨2-2+$\sqrt{2}$£©2£¬
½âµÃ£ºm=$\frac{3}{2}$£¬
¡àÔ²ÐÄEµÄ×ø±êΪ£º£¨2£¬$\frac{3}{2}$£©£»
£¨3£©¼ÙÉè´æÔÚµãF£¨t£¬$\frac{1}{2}$£©£¬Ê¹µÃËıßÐÎCEBFΪÁâÐΣ¬
Ôò|BF|=|CF|=|CE|£¬
¡à£¨$\frac{1}{2}$£©2+£¨2+$\sqrt{2}$-t£©2=£¨2-$\frac{1}{2}$£©2+t2£¬
½âµÃ£ºt=$\sqrt{2}$£¬
µ±t=$\sqrt{2}$ʱ£¬F£¨2£¬$\frac{1}{2}$£©£¬
´Ëʱ|EC|=$\frac{\sqrt{17}}{2}$£¬
|FC|=$\sqrt{£¨\sqrt{2}£©^{2}+£¨2-\frac{1}{2}£©^{2}}$=$\sqrt{2+\frac{9}{4}}$=$\frac{\sqrt{17}}{2}$£¬
¡à|CF|=|BF|=|BE|=|EC|£¬
¼´´æÔÚµãF£¨$\sqrt{2}$£¬$\frac{1}{2}$£©£¬Ê¹µÃËıßÐÎCEBFΪÁâÐΣ®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý×ÛºÏÒÔ¼°ÁâÐεÄÅж¨ÓëÐÔÖÊÒÔ¼°¹´¹É¶¨ÀíµÈ֪ʶ£¬ÀûÓÃÊýÐνáºÏµÃ³öFµãλÖÃÊǽâÌâ¹Ø¼ü£®
| A£® | 14 | B£® | 16 | C£® | 17 | D£® | 18 |