题目内容
20.(1)解不等式:2+$\frac{2x-1}{3}$≤x;(2)解方程组:$\left\{\begin{array}{l}3x-y=7\\ x+3y=-1.\end{array}$.
分析 (1)先去分母,再移项,合并同类项,把x的系数化为1即可;
(2)先把①变形为y=3x-7的形式,再代入②求出x的值,进而可得出y的值.
解答 解:(1)去分母,得6+2x-1≤3x,
移项得,2x-3x≤1-6,
合并同类项得,-x≤-5,
系数化为1得x≥5;
(2)$\left\{\begin{array}{l}3x-y=7①\\ x+3y=-1②\end{array}\right.$,
由①得y=3x-7代入②得x+3(3x-7)=-1,解得x=2,
把x=2代入①得,y=-1,
故原方程组的解是$\left\{\begin{array}{l}x=2\\ y=-1\end{array}$.
点评 本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
练习册系列答案
相关题目
11.甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t1小时后,快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者速度是慢者速度的( )
| A. | $\frac{{t}_{1}}{{t}_{1}+{t}_{2}}$ | B. | $\frac{{t}_{1}+{t}_{2}}{{t}_{1}}$ | C. | $\frac{{t}_{1}+{t}_{2}}{{t}_{1}-{t}_{2}}$ | D. | $\frac{{t}_{1}-{t}_{2}}{{t}_{1}+{t}_{2}}$ |
15.方程组$\left\{\begin{array}{l}{3x=2y}\\{x+y=50}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=10}\\{y=40}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=15}\\{y=35}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=20}\\{y=30}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=30}\\{y=20}\end{array}\right.$ |
5.在二次函数y=-$\frac{1}{12}$(x-2)2+3的图象上有两点(-1,y1),(1,y2),则y1-y2的值是( )
| A. | 负数 | B. | 零 | C. | 正数 | D. | 不能确定 |