题目内容

1.如图,正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,则△ADN的最小面积为$\frac{3}{8}$cm2

分析 设BM=xcm,则MC=(1-x)cm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据三角形的面积公式表示出△ADN的面积,用二次函数的性质求面积的最小值.

解答 解:设BM=xcm,则MC=(1-x)cm,
∵∠AMN=90°,
∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,
∴∠AMB=∠MNC,
又∵∠B=∠C,
∴△ABM∽△MCN,则$\frac{AB}{MC}$=$\frac{BM}{CN}$,即$\frac{1}{1-x}$=$\frac{x}{CN}$,
解得:CN=$\frac{x(1-x)}{1}$=x(1-x),
∴S△ADN=S正方形ABCD=$\frac{1}{2}$×1×[1-x(1-x)]=$\frac{1}{2}$x2-$\frac{1}{2}$x+$\frac{1}{2}$,
∵$\frac{1}{2}$<0,
∴当x=$\frac{1}{2}$cm时,S△ADN最小,最小值是$\frac{4×\frac{1}{2}×\frac{1}{2}-(-\frac{1}{2})^{2}}{4×\frac{1}{2}}$=$\frac{3}{8}$(cm2).
故答案是:$\frac{3}{8}$cm2

点评 本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网