ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÒÑÖªµãAµÄ×ø±êÊÇ£¨2£¬3£©£¬ÏÂÁÐ×ø±êÖУ¬ÓëµãA»¥Îª¡°Õý·½Ðε㡱µÄ×ø±êÊÇ¢Ù¢Û£®£¨ÌîÐòºÅ£©
¢Ù£¨1£¬2£©£»¢Ú£¨-1£¬5£©£»¢Û£¨3£¬2£©£®
£¨2£©ÈôµãB£¨1£¬2£©µÄ¡°Õý·½Ðε㡱CÔÚyÖáÉÏ£¬ÇóÖ±ÏßBCµÄ±í´ïʽ£»
£¨3£©µãDµÄ×ø±êΪ£¨-1£¬0£©£¬µãMµÄ×ø±êΪ£¨2£¬m£©£¬µãNÊÇÏß¶ÎODÉÏÒ»¶¯µã£¨º¬¶Ëµã£©£¬ÈôµãM£¬N»¥Îª¡°Õý·½Ðε㡱£¬ÇómµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾ÝÕý·½ÐεÄÐÔÖʿɵóö|x1-x2|=|y1-y2|£¬¶ÔÕÕ¢Ù¢Ú¢ÛµÄ×ø±ê¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÓɵãBµÄ×ø±ê½áºÏ»¥Îª¡°Õý·½Ðε㡱µÄ×ø±êÌØÕ÷£¬¼´¿ÉµÃ³öµãCµÄ×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÖ±ÏßBCµÄ±í´ïʽ£»
£¨3£©¹ýµãO¡¢D·Ö±ð×÷ÓëxÖá¼Ð½ÇΪ45¡ãµÄÖ±Ïߣ¬ÕÒ³öµãO¡¢D¶ÔÓ¦µÄ¡°Õý·½Ðε㡱µÄ×ø±ê£¬Óɴ˼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßµãP£¨x1£¬y1£©¡¢µãQ£¨x2£¬y2£©»¥Îª¡°Õý·½Ðε㡱£¬
¡à|x1-x2|=|y1-y2|£®
¡ß|2-1|=|3-2|£¬|-1-2|¡Ù|5-3|£¬|3-2|=|2-3|£¬
¡àÓëµãA»¥Îª¡°Õý·½Ðε㡱µÄ×ø±êÊÇ¢Ù£¨1£¬2£©£»¢Û£¨3£¬2£©£®
¹Ê´ð°¸Îª£º¢Ù¢Û£®
£¨2£©¡ßµãB£¨1£¬2£©µÄ¡°Õý·½Ðε㡱CÔÚyÖáÉÏ£¬
¡àµãCµÄ×ø±êΪ£¨0£¬1£©£¬£¨0£¬3£©£¬
ÉèÖ±ÏßBCµÄ±í´ïʽΪy=kx+b£¬
½«µãB¡¢CµÄ×ø±ê´úÈëy=kx+b£¬![]()
$\left\{\begin{array}{l}{b=1}\\{k+b=2}\end{array}\right.$»ò$\left\{\begin{array}{l}{b=3}\\{k+b=2}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=1}\\{b=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ±í´ïʽΪy=x+1»òy=-x+3£®
£¨3£©¹ýµãO¡¢D·Ö±ð×÷ÓëxÖá¼Ð½ÇΪ45¡ãµÄÖ±Ïߣ¬ÈçͼËùʾ£®
¡ßµãMµÄ×ø±êΪ£¨2£¬m£©£¬µãNÊÇÏß¶ÎODÉÏÒ»¶¯µã£¨º¬¶Ëµã£©£¬µãM£¬N»¥Îª¡°Õý·½Ðε㡱£¬
¡àµãDµÄÕý·½Ðεã×ø±êÊÇ£¨2£¬3£©£¬£¨2£¬-3£©£¬µãOµÄÕý·½Ðεã×ø±êÊÇ£¨2£¬2£©£¬£¨2£¬-2£©£¬
¡à2¡Üm¡Ü3»ò-3¡Üm¡Ü-2£®
µãÆÀ ±¾Ì⿼²éÁËÁ½ÌõÖ±ÏßÏཻ»òƽÐÐÎÊÌâ¡¢Õý·½ÐεÄÐÔÖÊÒÔ¼°´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©¸ù¾ÝÕý·½ÐεÄÐÔÖÊÕÒ³ö|x1-x2|=|y1-y2|£»£¨2£©¸ù¾ÝµãBµÄ×ø±êÕÒ³öµãCµÄ×ø±ê£»£¨3£©·Ö±ðÕÒ³öµãO¡¢DµÄÕý·½Ðεã×ø±ê£®
| A£® | ´ò¿ªµçÊÓ»úÕýÔÚ²¥·ÅÅ·ÖÞ± | |
| B£® | ÈÎÒâ»Ò»¸öÈý½ÇÐΣ¬ÆäÄڽǺÍΪ360¡ã | |
| C£® | ÖÀһöÖʵؾùÔȵÄ÷»×Ó£¬ÖÀ³öµÄµãÊýΪ8 | |
| D£® | ƽÐÐÓÚͬһÌõÖ±ÏßµÄÁ½ÌõÖ±Ï߯½ÐÐ |