题目内容
(1)求证:OD∥BE;
(2)猜想:OF与CD有何数量关系?并说明理由.
【答案】分析:(1)连接OE,由于AM、DE是⊙O的切线,∠OAD=∠OED=90°,那么DA=DE,而OD=OD,于是可证△AOD≌△EOD,从而有∠AOD=∠EOD=
∠AOE,根据圆周角定理有∠ABE=
∠AOE,那么∠AOD=∠ABE,从而有OD∥BE;
(2)连接OF,同(1)证明全等一样,易证△OCE≌△OCB,那么∠OCB=∠OCE,而AM∥BN,于是可得∠ADO+∠EDO+∠OCB+∠OCE=180°,再由(1)得∠ADO=∠EDO,易证∠EDO+∠OCE=90°,从而可知△OCD是直角三角形,而F是斜边上的中点,于是OF=
CD.
解答:
解:(1)证明:连接OE,
∵AM、DE是⊙O的切线,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,
,
∴△AOD≌△EOD,
∴∠AOD=∠EOD=
∠AOE,
∵∠ABE=
∠AOE,
∴∠AOD=∠ABE,
∴OD∥BE;
(2)OF=
CD.
理由:连接OC,
∵BC、CE是⊙O的切线,
∴∠OCB=∠OCE,
∵AM∥BN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中点,
∴OF=
CD.
点评:本题考查了全等三角形的判定和性质、圆周角定理、平行线的判定、直角三角形斜边的中线等于斜边的一半.解题的关键是连接OE、OC,构造直角三角形.
(2)连接OF,同(1)证明全等一样,易证△OCE≌△OCB,那么∠OCB=∠OCE,而AM∥BN,于是可得∠ADO+∠EDO+∠OCB+∠OCE=180°,再由(1)得∠ADO=∠EDO,易证∠EDO+∠OCE=90°,从而可知△OCD是直角三角形,而F是斜边上的中点,于是OF=
解答:
∵AM、DE是⊙O的切线,
∴DA=DE,∠OAD=∠OED=90°,
又∵OD=OD,
在△AOD和△EOD中,
∴△AOD≌△EOD,
∴∠AOD=∠EOD=
∵∠ABE=
∴∠AOD=∠ABE,
∴OD∥BE;
(2)OF=
理由:连接OC,
∵BC、CE是⊙O的切线,
∴∠OCB=∠OCE,
∵AM∥BN,
∴∠ADO+∠EDO+∠OCB+∠OCE=180°,
由(1)得∠ADO=∠EDO,
∴2∠EDO+2∠OCE=180°,
即∠EDO+∠OCE=90°,
在Rt△DOC中,
∵F是DC的中点,
∴OF=
点评:本题考查了全等三角形的判定和性质、圆周角定理、平行线的判定、直角三角形斜边的中线等于斜边的一半.解题的关键是连接OE、OC,构造直角三角形.
练习册系列答案
相关题目