题目内容
【题目】阅读以下材料,并按要求完成相应的任务.如图(1),已知四边形ABCD的对角线AC,BD相交于点O,点M是BC边的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.我们称四边形0EMF为四边形ABCD的“伴随四边形”.
![]()
(1)若四边形ABCD是菱形,则其“伴随四边形”是 ,若四边形ABCD矩形,则其“伴随四边形”是: (在横线上填特殊平行四边形的名称)
(2)如图(2),若四边形ABCD是矩形,M是BC延长线上的一个动点,其他条件不变,点F落在AC的延长线上,请写出线段OB、ME,MF之间的数量关系,并说明理由.
【答案】(1)矩形;菱形
(2)证明见解析.
【解析】
(1)根据矩形、菱形的性质定理和判定定理进行证明即可;
(2)根据平行四边形的性质得到OE=MF,得到OB+MF=BE,根据平行线的性质和等腰三角形的性质得到EB=EM,证明结论.
(1)如图1,∵ME∥AC,MF∥BD,
∴四边形OEMF是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠BOC=90°,
∴四边形OEMF是矩形;
如图2,∵ME∥AC,MF∥BD,
∴四边形OEMF是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∵M是BC边的中点,
∴ME=
OC,MF=
OB,
∴ME=MF,
∴四边形OEMF是菱形;
故答案为:矩形;菱形.
![]()
![]()
(2)∵ME∥AC,MF∥BD,
∴四边形OEMF是平行四边形,
∴OE=MF,
∴OB+MF=OB+OE=BE,
∵四边形ABCD是矩形,
∴∠OBC=∠OCB,
∵ME∥AC,
∴∠EMB=∠OCB,
∴∠EBM=∠EMB,
∴EB=EM,
∴EM=OB+MF.
练习册系列答案
相关题目