题目内容
考点:平行四边形的判定与性质
专题:开放型
分析:四边形EBFD要为平行四边形,则要证DE=BF,就要证△AEB≌△CFD,而在平行四边形中已有AB=CD,∠A=∠C,因而可添加AE=FC或∠ABE=∠CDF就可用SAS或ASA得证.
解答:
解:∵四边形EBFD要为平行四边形.
∴∠BAE=∠DCF,AB=CD
在△AEB与△CFD中,
,
∴△AEB≌△CFD(SAS),
∴AE=FC
∴DE=BF
∴四边形EBFD为平行四边形.
∴可添加的条件是AE=FC,同理还可添加∠ABE=∠CDF.
故答案为:AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一);
∴∠BAE=∠DCF,AB=CD
在△AEB与△CFD中,
|
∴△AEB≌△CFD(SAS),
∴AE=FC
∴DE=BF
∴四边形EBFD为平行四边形.
∴可添加的条件是AE=FC,同理还可添加∠ABE=∠CDF.
故答案为:AE=FC或∠ABE=∠CDF或BE=DF(答案不唯一);
点评:本题考查了平行四边形的判定与性质,是开放题,答案不唯一,可以针对各种平行四边形的判定方法,给出条件,本题可通过要证DE=BF,且DE∥BF,即可证明平行四边形成立,于是构造条件证△AEB≌△CFD即可.
练习册系列答案
相关题目
1号仓库和2号仓库共存粮400吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果1号仓库所余粮食之比是2:1,则1号仓库与2号仓库原来各存粮多少吨?设1号仓库和2号仓库原来各存粮x吨、y吨,下列方程组正确的是( )
A、
| |||||
B、
| |||||
C、
| |||||
D、
|