题目内容
3.解方程组(1)$\left\{\begin{array}{l}{2x-y=5}\\{3x+4y=2}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+2y=9}\\{3x-2y=-1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{3x-2y=-2}\\{2x+3y=6}\end{array}\right.$
(4)$\left\{\begin{array}{l}{3(x-1)=y+5}\\{\frac{y-1}{3}=\frac{x}{5}+1}\end{array}\right.$
(5)$\left\{\begin{array}{l}{x-2y=-3}\\{2x+3y-z=5}\\{3x+y+2z=11}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可;
(5)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{2x-y=5①}\\{3x+4y=2②}\end{array}\right.$,
①×4+②得:11x=22,即x=2,
把x=2代入①得:y=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+2y=9①}\\{3x-2y=-1②}\end{array}\right.$,
①+②得:4x=8,即x=2,
把x=2代入①得:y=$\frac{7}{2}$;
(3)$\left\{\begin{array}{l}{3x-2y=-2①}\\{2x+3y=6②}\end{array}\right.$,
①×3+②×2得:13x=6,即x=$\frac{6}{13}$,
②×3-①×2得:13y=22,即y=$\frac{22}{13}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{6}{13}}\\{y=\frac{22}{13}}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{3x-y=8①}\\{3x-5y=-20②}\end{array}\right.$,
①-②得:4y=28,即y=7,
把y=7代入①得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=7}\end{array}\right.$;
(5)$\left\{\begin{array}{l}{x-2y=-3①}\\{2x+3y-z=5②}\\{3x+y+2z=11③}\end{array}\right.$,
②×2+③得:7x+7y=21,即x+y=3④,
④-①得:3y=6,即y=2,
把y=2代入④得:x=1,
将x=1,y=2代入②得:z=3,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\\{z=3}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | 1,50 | B. | 1,1 | C. | 50,50 | D. | 50,1 |
①函数图象一定经过点(-2,-3);
②函数图象在第一、三象限;
③函数值y随x的增大而减小;
④当x≤-6时,函数y的取值范围为-1≤y<0.
这其中正确的有( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
| A. | 9cm | B. | 9.5cm | C. | 4cm或9cm | D. | 4cm或9.5cm |