题目内容


已知:如图,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2.

(1)如图(1),当四边形EFGH为正方形时,求△GFC的面积.

(2)如图(2),当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示).

(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.


(1)10   (2)12-a   (3)不能

【解析】

解:(1)过点G作GM⊥BC于M.

在正方形EFGH中,

∠HEF=90°,EH=EF,

∴∠AEH+∠BEF=90°.

∵∠AEH+∠AHE=90°,

∴∠AHE=∠BEF.

又∵∠A=∠B=90°,

∴△AHE≌△BEF.

同理可证△MFG≌△BEF.

∴GM=BF=AE=2.∴FC=BC-BF=10.

(2)过点G作GM⊥BC交BC的延长线于M,连接HF.

∵AD∥BC,∴∠AHF=∠MFH.

∵EH∥FG,∴∠EHF=∠GFH.

∴∠AHE=∠MFG.

又∵∠A=∠GMF=90°,EH=GF,

∴△AHE≌△MFG.∴GM=AE=2.

(3)△GFC的面积不能等于2.

说明:∵若SGFC=2,则12-a=2,∴a=10.

此时,在△BEF中,

在△AHE中,

∴AH>AD,即点H已经不在边AD上,故不可能有SGFC=2.

【难度】困难


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网