ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶¥µãΪ£¨4£¬﹣1£©µÄÅ×ÎïÏß½»yÖáÓÚAµã£¬½»xÖáÓÚB£¬CÁ½µã£¨µãBÔÚµãCµÄ×ó²à£©£¬ÒÑÖªAµã×ø±êΪ£¨0£¬3£©£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ
£¨2£©¹ýµãB×÷Ïß¶ÎABµÄ´¹Ïß½»Å×ÎïÏßÓÚµãD£¬Èç¹ûÒÔµãCΪԲÐĵÄÔ²ÓëÖ±ÏßBDÏàÇУ¬ÇëÅжÏÅ×ÎïÏߵĶԳÆÖálÓë¡ÑCÓÐÔõÑùµÄλÖùØÏµ£¬²¢¸ø³öÖ¤Ã÷£»
£¨3£©ÒÑÖªµãPÊÇÅ×ÎïÏßÉϵÄÒ»¸ö¶¯µã£¬ÇÒλÓÚA£¬CÁ½µãÖ®¼ä.ÎÊ£ºµ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷PACµÄÃæ»ý×î´ó£¿²¢Çó³ö´ËʱPµãµÄ×ø±êºÍ¡÷PACµÄ×î´óÃæ»ý£®
![]()
½â£º£¨1£©ÉèÅ×ÎïÏßΪy=a£¨x﹣4£©2﹣1£¬
¡ßÅ×ÎïÏß¾¹ýµãA£¨0£¬3£©£¬
¡à3=a£¨0﹣4£©2﹣1£¬
£»··················2·Ö
¡àÅ×ÎïÏßΪ
£»····················3·Ö
£¨2£©Ïཻ£®·······················4·Ö
Ö¤Ã÷£ºÁ¬½ÓCE£¬ÔòCE¡ÍBD£¬
µ±
ʱ£¬x1=2£¬x2=6£®
A£¨0£¬3£©£¬B£¨2£¬0£©£¬C£¨6£¬0£©£¬
¶Ô³ÆÖáx=4£¬·························5·Ö
¡àOB=2£¬AB=
=
£¬BC=4£¬
¡ßAB¡ÍBD£¬
¡à¡ÏOAB+¡ÏOBA=90¡ã£¬¡ÏOBA+¡ÏEBC=90¡ã£¬
¡à¡÷AOB¡×¡÷BEC£¬
¡à
=
£¬¼´
=
£¬½âµÃCE=
£¬················6·Ö
¡ß
£¾2£¬
¡àÅ×ÎïÏߵĶԳÆÖálÓë¡ÑCÏཻ£®·····················7·Ö
£¨3£©Èçͼ£¬¹ýµãP×÷ƽÐÐÓÚyÖáµÄÖ±Ïß½»ACÓÚµãQ£»
¿ÉÇó³öACµÄ½âÎöʽΪ
£»···················8·Ö
ÉèPµãµÄ×ø±êΪ£¨m£¬
£©£¬
ÔòQµãµÄ×ø±êΪ£¨m£¬
£©£»················9·Ö
¡àPQ=
m+3﹣£¨
m2﹣2m+3£©=﹣
m2+
m£®
¡ßS¡÷PAC=S¡÷PAQ+S¡÷PCQ=
£¨﹣
m2+
m£©¡Á6
=
£¨m﹣3£©2+
£»································11·Ö
¡àµ±m=3ʱ£¬¡÷PACµÄÃæ»ý×î´óΪ
£»···················12·Ö
´Ëʱ£¬PµãµÄ×ø±êΪ£¨3£¬
£©£®·····················13·Ö
£¨1£©ÇëÄãÇó³ö¸Ã°àµÄ×ÜÈËÊý£¬²¢²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨2£©¸Ã°à°àί4ÈËÖУ¬1ÈËÑ¡ÐÞÀºÇò£¬2ÈËÑ¡ÐÞ×ãÇò£¬1ÈËÑ¡ÐÞÅÅÇò£¬ÀîÀÏʦҪ´ÓÕâ4ÈËÖÐÈËÑ¡2ÈËÁ˽âËûÃǶÔÌåÓýÑ¡Ð޿εĿ´·¨£¬ÇëÄãÓÃÁбí»ò»Ê÷״ͼµÄ·½·¨£¬ÇóÑ¡³öµÄ2ÈËÖÐÇ¡ºÃ1ÈËÑ¡ÐÞÀºÇò£¬1ÈËÑ¡ÐÞ×ãÇòµÄ¸ÅÂÊ£®![]()