题目内容

问题呈现:

如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.

问题分析:

连接OB,要证明BE是⊙O的切线,只要证明OB ____ BE,由题意知∠E=90°,故只需证明OB ___ DE.

解法探究:

(1)小明对这个问题进行了如下探索,请补全他的证明思路:

如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以 __ ,因为BD=BA,所以 ______ ,利用同弧所对的圆周角相等和等量代换,得到 ____ ,所以DE∥OB,从而证明出BE是⊙O的切线.

(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.

(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网