题目内容
如图,在平行四边形ABCD中,点E在边BC上,过点E作BD的平行线交DC于点G、交AD的延长线于点F.
(1)求证:DF=BE;
(2)若,BE=2,求BC的长.
已知⊙O的半径为r,弦AB=r,则AB所对圆周角的度数为 .
问题呈现:
如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.
问题分析:
连接OB,要证明BE是⊙O的切线,只要证明OB ____ BE,由题意知∠E=90°,故只需证明OB ___ DE.
解法探究:
(1)小明对这个问题进行了如下探索,请补全他的证明思路:
如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以 __ ,因为BD=BA,所以 ______ ,利用同弧所对的圆周角相等和等量代换,得到 ____ ,所以DE∥OB,从而证明出BE是⊙O的切线.
(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.
(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).
一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是 .
如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为( )
A.30πcm2 B.48πcm2 C.60πcm2 D.80πcm2
若代数式x2﹣1的值与代数式2x+1的值相等,求x的值.
把方程2x(x﹣3)=3x+2化成一元二次方程的一般形式后,它的一次项系数是 .
如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
若bk<0,则直线y=kx+b一定通过( )
A.第一、二象限 B.第二、三象限
C.第三、四象限 D.第一、四象限