题目内容
若x=2是方程x2+3x﹣2m=0的一个根,则m的值为________.
(2017济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )
A. B. C. D.
已知关于的不等式组的整数解共有3个,则的取值范围是___.
已知关于x的方程(1﹣2k)x2﹣2x﹣1=0
(1)若此方程为一元一次方程,求k的值.
(2)若此方程为一元二次方程,且有实数根,试求k的取值范围.
用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为_____.
已知x1和x2是关于x的方程x2﹣2(m+1)x+m2+3=0的两实数根,x12+x22=22, 则m的值是( )
A. ﹣6或2 B. 2 C. ﹣2 D. 6或﹣2
已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
【答案】(1)y=-x2-x+8(2)
【解析】试题分析:(1)求出一元二次方程的两根即可求出两点坐标,把B、C两点坐标代入二次函数的解析式就可解答;
(2)过点F作FG⊥AB,垂足为G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根据S=S△BCE-S△BFE,求S与m之间的函数关系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函数的表达式为y=-x2-x+8
(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
过点F作FG⊥AB,垂足为G,
则sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
点睛:本题考查了一元二次方程的解法,待定系数法求函数关系系,相似三角形的判定与性质,锐角三角函数的定义,割补法求图形的面积,熟练掌握待定系数法求二次函数关系式、相似三角形的判定与性质是解答本题的关键.
【题型】解答题【结束】23
如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
下列计算中,不正确的是( )
A. -2x+3x=x B. a6÷a3=a3 C. (-2x2y)3=-6x6y3 D. -=
若实数a,b在数轴上对应的位置如图所示,化简的结果为_____.