题目内容
| A、25° | B、50° |
| C、30° | D、45° |
考点:圆周角定理,垂径定理
专题:
分析:由OA⊥BC,根据垂径定理的即可求得:
=
,然后由圆周角定理,即可求得∠AOB的度数.
| AC |
| AB |
解答:解:∵OA⊥BC,
∴
=
,
∴∠AOB=2∠ADC=2×25°=50°.
故选B.
∴
| AC |
| AB |
∴∠AOB=2∠ADC=2×25°=50°.
故选B.
点评:此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目
| A、a+b<0 |
| B、a+c<0 |
| C、a-b>0 |
| D、b-c<0 |
已知|a+3|+|b-5|=0,则a、b的值为( )
| A、a=3,b=5 |
| B、a=-3,b=5 |
| C、a=-3,b=-5 |
| D、a=3,b=-5 |