题目内容
在等腰三角形ABC中,AB=AC,腰AB的高CD与腰AC的夹角为30°,且CD=
,则底边BC的长为________.
4或
分析:分类讨论:当等腰三角形ABC为锐角三角形,由CD⊥AB,∠ACD=30°,得∠A=60°,根据含30度的直角三角形三边的关系得到DC=
AD,AC=2AD,则易得AC=4,根据等腰三角形的性质由∠A=60°得△ABC为等边三角形,即可得到BC=4;当等腰三角形ABC为钝角三角形,由CD⊥AB,∠ACD=30°,得∠DAC=60°,而AB=AC,则∠B=30°,在Rt△BCD中根据含30度的直角三角形三边的关系即可得到BC的长.
解答:
解:当等腰三角形ABC为锐角三角形,如图1,
∵CD⊥AB,∠ACD=30°,
∴∠A=60°,
∴DC=
AD,AC=2AD,
而CD=
,
∴AD=2,
∴AC=4,
又∵AB=AC,而∠A=60°,
∴△ABC为等边三角形,
∴BC=4;
当等腰三角形ABC为钝角三角形,如图2,
∵CD⊥AB,∠ACD=30°,
∴∠DAC=60°,
∵AC=AB,
∴∠B=30°,
在Rt△BCD中,∠B=30°,CD-2
,
∴BC=2CD=4
.
∴BC为4或4
.
故答案为:4或4
.
点评:本题考查了等腰三角形的性质:等腰三角形的两腰相等.也考查了含30度的直角三角形三边的关系以及分类讨论思想的运用.
分析:分类讨论:当等腰三角形ABC为锐角三角形,由CD⊥AB,∠ACD=30°,得∠A=60°,根据含30度的直角三角形三边的关系得到DC=
解答:
∵CD⊥AB,∠ACD=30°,
∴∠A=60°,
∴DC=
而CD=
∴AD=2,
∴AC=4,
又∵AB=AC,而∠A=60°,
∴△ABC为等边三角形,
∴BC=4;
当等腰三角形ABC为钝角三角形,如图2,
∵CD⊥AB,∠ACD=30°,
∴∠DAC=60°,
∵AC=AB,
∴∠B=30°,
在Rt△BCD中,∠B=30°,CD-2
∴BC=2CD=4
∴BC为4或4
故答案为:4或4
点评:本题考查了等腰三角形的性质:等腰三角形的两腰相等.也考查了含30度的直角三角形三边的关系以及分类讨论思想的运用.
练习册系列答案
相关题目