题目内容
考点:轴对称-最短路线问题
专题:
分析:MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可,作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,则可判断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得此时AM+NB的值最小.过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB.
解答:
解:作点A关于直线a的对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,
∵A到直线a的距离为2,a与b之间的距离为4,
∴AA′=MN=4,
∴四边形AA′NM是平行四边形,
∴AM+NB=A′N+NB=A′B,
过点B作BE⊥AA′,交AA′于点E,
易得AE=2+4+3=9,AB=15,A′E=2+3=5,
在Rt△AEB中,BE=
=12,
在Rt△A′EB中,A′B=
=13.
故AM+NB=13.
∵A到直线a的距离为2,a与b之间的距离为4,
∴AA′=MN=4,
∴四边形AA′NM是平行四边形,
∴AM+NB=A′N+NB=A′B,
过点B作BE⊥AA′,交AA′于点E,
易得AE=2+4+3=9,AB=15,A′E=2+3=5,
在Rt△AEB中,BE=
| AB2-AE2 |
在Rt△A′EB中,A′B=
| A′E2+BE2 |
故AM+NB=13.
点评:本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.
练习册系列答案
相关题目
在2,-2,0,-
四个数中,最小的数是( )
| 1 |
| 2 |
| A、2 | ||
| B、-2 | ||
| C、0 | ||
D、-
|