题目内容
计算:
.
如图所示,已知
中,
上的高
为BC上一点,
,交AB于点E,交AC于点
不过A、
,设E到BC的距离为x,则
的面积y关于x的函数的图象大致为
.
![]()
A.
B. ![]()
C.
D. ![]()
在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:
M号衬衫数 | 0 | 1 | 4 | 5 | 7 | 9 | 10 | 11 |
包数 | 7 | 3 | 10 | 15 | 5 | 4 | 3 | 3 |
根据以上数据,选择正确选项( ).
A. M号衬衫一共有47件
B. 从中随机取一包,包中L号衬衫数不低于9是随机事件
C. 从中随机取一包,包中L号衬衫数不超过4的概率为0.26
D. 将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.252
查看答案如图,菱形ABCD的周长为
,垂足为
,则下列结论正确的有
;
;
菱形面积为
;
.
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入
亿元
若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
如图所示,直线y
x
b与y
kx
相交于点P,点P的横坐标为
,则关于x的不 等式x
b
kx
的解集在数轴上表示正确的是
![]()
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
- 题型:填空题
- 难度:简单
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
B 【解析】试题分析:由﹣=2,可得4a+b=0.故(1)正确;当x=﹣3时,y<0,所以9a﹣3b+c<0,即9a+c<3b,故(2)错误;由图象可知抛物线经过(﹣1,0)和(5,0),可得,解得,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,又因a<0,所以8a+7b=2c>0,故(3)正确.已知点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),计算﹣2=,2﹣(﹣)=,因<...如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
![]()
A. 50° B. 60° C. 70° D. 80°
查看答案关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是( )
A. k≤
B. k<
C. k≥
D. k>![]()
抛物线y=﹣
x2﹣x的顶点坐标是( )
A. (1,﹣
) B. (﹣1,
) C. (
,﹣1) D. (1,0)
4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( )
![]()
A.第一张、第二张
B.第二张、第三张
C.第三张、第四张
D.第四张、第一张
查看答案已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
| … |
| 0 | 1 | 3 | … |
| … |
| 1 | 3 | 1 | … |
则下列判断中正确的是( )
A. 抛物线开口向上 B. 抛物线与
轴交于负半轴
C. 当x=4时,y>0 D. 方程ax2+bx+c=0的正根在3与4之间
查看答案 试题属性- 题型:单选题
- 难度:简单
若y与x3成反比例,且x=2时
。
(1)求y与x的函数表达式;
(2)求y=—16时x的值。
(1)y= (2)x= 【解析】试题分析:(1)根据y与x3成反比例,可设,把x=2, ,代入可得k=2, 即可求出函数表达式,(2)把y=-16代入(1)中函数关系式即可求解. 试题解析:(1)因为y与x3成反比例, 则可设, 因为x=2, , 所以, 所以 (2)当 y=-16时,代入可得: ,解得: x=.如图,点A在双曲线
上,点B在双曲线
上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.
![]()
如图所示,冰冰在墙上挂了一面镜子AB,调整好标杆CD,正好通过标杆顶部在镜子上边缘A处看到旗杆的顶端E的影子,已知AB=2m,CD=1.5m,BD=2m,BF=20m,则旗杆EF的高度为__________m。
![]()
如图,在ΔABC中,∠ACB=90°,AC=7,BC=3,CM、CH 分别是中线和高,则SΔACM:SΔBCM = __________,SΔACH:SΔBCH = __________.
![]()
已知
,则抛物线
的顶点坐标为____________。
如图,反比例函数
(k<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到了点B’在此反比例函数的图象上,则t的值是( )
![]()
A.
B.
C.
D. ![]()
- 题型:解答题
- 难度:中等
在2014年6月23日第十届保护韩江母亲河徒步节上,如图所示,某同学为了测得一段南北流向的河段的宽,在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西
的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西
的方向上,请你根据以上数据,求这段河段的宽度
结果保留根号
![]()
为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.
(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?
(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?
查看答案“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数 |
第1组 |
| 6 |
第2组 |
| 8 |
第3组 |
| 14 |
第4组 |
| a |
第5组 |
| 10 |
请结合图表完成下列各题:
求表中a的值;
频数分布直方图补充完整;
若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
![]()
如图,在平面直角坐标系中,一次函数
为常数
的图象与y轴相交于点A,与函数
的图象相交于点
![]()
求点B的坐标及一次函数的解析式;
若点P在y轴上,且
为直角三角形,请直接写出点P的坐标.
如图,
是CD上一点,BE交AD于点
求证:
.
![]()
如图,
的底边经过
上的点C,且
与OA、OB分别交于D、E两点.
![]()
求证:AB是
的切线;
若D为OA的中点,阴影部分的面积为
,求
的半径r.
- 题型:解答题
- 难度:中等
如图所示,直线y
x
b与y
kx
相交于点P,点P的横坐标为
,则关于x的不 等式x
b
kx
的解集在数轴上表示正确的是
![]()
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果
,那么
=( )
![]()
A.
B.
C.
D. ![]()
如图所示的几何体的俯视图是
![]()
A.
B.
C.
D. ![]()
下列运算正确的是![]()
A.
B.
C.
D. ![]()
陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学的路程与所用时间的关系示意图.根据图中提供的信息回答下列问题:
(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?
(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?
(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?
(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?
![]()
如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.
![]()
- 题型:单选题
- 难度:简单
如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x的变化,y的值也随之变化.
(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?
![]()
(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y |
(3)当x为何值时,y的值最大?
(1)y=10x-x2,x是自变量,y是因变量;(2)填表见解析;(3)当x为5时,y的值最大. 【解析】试题分析:(1)根据周长的等量关系可得长方形的另一边为10-x,那么面积=x(10-x),自变量是x,因变量是函数值y; (2)把相关x的值代入(1)中的函数解析式求值即可; (3)根据(2)所得的结论可得x为何值时,y的值最大. 试题解析: 【解析】 (1)由...如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.
(1)图中∠AOC的对顶角为________,∠BOE的补角为________;
(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度数.
![]()
如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,中间将修建一座边长为(a+b)米的正方形雕像,规划部门计划将余下部分进行绿化.
(1)试用含a,b的式子表示绿化部分的面积(结果要化简);
(2)若a=3,b=2,请求出绿化部分的面积.
![]()
计算:
(1)5x(2x2-3x+4);
(2)20172-2018×2016;
(3)
;
(4)(a+b)(a-b)+(a+b)2-2a2.
查看答案如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为____.
![]()
如图,直线AB与直线CD交于点O,OE⊥AB,∠DOF=90°,OB平分∠DOG,有下列结论:①当∠AOF=60°时,∠DOE=60°;②OD为∠EOG的平分线;③与∠BOD相等的角有三个;④∠COG=∠AOB-2∠EOF.其中正确的结论是________(填序号).
![]()
- 题型:解答题
- 难度:中等
如图,直线a和b被直线c所截,下列条件能判断a∥b的是( )
![]()
A. ∠1=∠2 B. ∠2=∠3
C. ∠1+∠4=180° D. ∠2+∠5=180°
C 【解析】试题分析:A、∠1和∠2是邻补角,∠1=∠2不能判定a∥b; B、∠2和∠3是同旁内角,∠2=∠3不能判定a∥b; C、∵∠1+∠4=180°,∠1+∠2=180°, ∴∠2=∠4, ∴a∥b; D、∠2和∠5是内错角,∠2+∠5=180°不能判定a∥b. 故选C.下列计算正确的是( )
A. -3x2y·5x2y=2x2y B. -2x2y3·2x3y=-2x5y4
C. 35x3y2÷5x2y=7xy D. (-2x-y)(2x+y)=4x2-y2
查看答案下列说法:①两条直线被第三条直线所截,内错角相等;②相等的角是对顶角;③互余的两个角一定都是锐角;④互补的两个角一定有一个为钝角,另一个角为锐角。其中正确的有( )
A.1个 B.2个 C.3个 D.4个
查看答案下列计算正确的是( )
A.a2+a3=a5 B.a2•a3=a6
C.(a2)3=a5 D.a5÷a2=a3
查看答案在不借助任何工具的情况下,人的眼睛可以看到的最小物体的长度约为0.00003米,将0.00003用科学记数法表示为( )
A. 3×10-5 B. 0.3×10-4 C. 30×10-6 D. 3×105
查看答案用火柴拼成如图所示的几何图形。图1有6根火柴棒拼成,图2有11根火柴棒拼成,图3由16根拼成······
![]()
图1 图2 图3
(1)图4由__________根火柴棒拼成;
(2)根据规律猜想,图n由________根火柴棒拼成;(用含n的代数式表示,不用说明理由)
(3)是否存在图x恰好由2017根火柴棒拼成?若存在,求出x的值;若不存在,请说明理由.
查看答案 试题属性- 题型:单选题
- 难度:中等
若分式方程
无解,则m的值为( )
A. ﹣1 B. 0 C. 1 D. 3
A 【解析】两边同乘以(x+3)得: x+2=m, x=m-2, ∵方程无解 ∴x+3=0, 即m-2+3=0, ∴m=-1, 故选A.已知
,则
的值为( )
A.
B.
C. ﹣2 D. 2
如图,AB=AD,要说明△ABC≌△ADE,需添加的条件不能是( )
![]()
A. ∠E=∠C B. AC=AE C. ∠ADE=∠ABC D. DE=BC
查看答案如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪开后拼成一个长方形,上述操作能验证的等式是( )
![]()
A. (a+b)(a-b)=a2-b2 B. (a-b)2=a2-2ab+b2
C. (a+b)2=a2+2ab+b2 D. a2+ab=a(a+b)
查看答案如果分式
的值等于0,那么( )
A.
B.
C.
D. ![]()
计算
的结果是( )
A. ﹣3 B. 3 C. 7 D. 4
查看答案 试题属性- 题型:单选题
- 难度:中等